منابع مشابه
NONINVERTIBLE TRANSFORMATIONS ADMITTING NO ABSOLUTELY CONTINUOUS ct-FINITE INVARIANT MEASURE
We study a family of H-to-1 conservative ergodic endomorphisms which we will show to admit no rj-finite absolutely continuous invariant measure. We exhibit recurrent measures for these transformations and study their ratio sets; the examples can be realized as C°° endomorphisms of the 2-torus.
متن کاملAbsolutely Continuous, Invariant Measures for Dissipative, Ergodic Transformations
We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-absolu...
متن کاملNon-absolutely Continuous Foliations
We consider a partially hyperbolic diffeomorphism of a compact smooth manifold preserving a smooth measure. Assuming that the central distribution is integrable to a foliation with compact smooth leaves we show that this foliation fails to have the absolute continuity property provided that the sum of Lyapunov exponents in the central direction is not zero on a set of positive measure. We also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1969
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1969-12375-x